
ORNL is managed by UT-Battelle LLC for the US Department of Energy

HIP for CUDA Programmers

Getting you up to speed on converting
your CUDA code to HIP

Subil Abraham

HPC Engineer

22 Open slide master to edit

What We’ll Cover Today

(Does require a basic familiarity with CUDA)

• Get you familiar with hipify tools
– Demonstrate usage through several examples

• Show things to watch out for with hipify and compiling with HIP

• AMD talk – Alessandro Fanfarillo – Experiences with CAAR apps

• Exercises for you to practice hipify

33 Open slide master to edit

Brief Overview of HIP

• AMD’s API for GPU programming.

• Usable with both ROCm backend (for AMD GPUs) and CUDA
backend (for Nvidia GPUs).

• Almost 1 to 1 replacement of CUDA (cudaAbcCall ->
hipAbcCall)
– Some CUDA calls not supported, because they are deprecated or not

yet implemented for HIP
– Documentation: docs.amd.com
– HIP-CUDA support table https://github.com/ROCm-Developer-

Tools/HIPIFY#cuda-apis

44 Open slide master to edit

Why use HIP?

• Well, you want to run on Frontier, don’t you?

• (Mostly) Identical to CUDA, so almost no learning curve.
– cudaMalloc -> hipMalloc
– cudaDeviceSynchronize -> hipDeviceSynchronize
– mykernel<<<blocks, grid>>>(args) -> hipLaunchKernelGGL(args)**

• Can be used for AMD, Nvidia and (soon*) Intel GPUs

• Existing tools for converting your CUDA code to HIP

*Ongoing ECP project
**mykernel<<<>>> syntax may be supported in HIP now

55 Open slide master to edit

Converting CUDA to HIP

• A couple of tools available
– hipify-perl – regex find and replace
– hipify-clang – think of it as a source to source compiler. Walks the AST,

works for more complicated constructs where regex might fail.

• For most cases, they should work the same.
– hipify-perl will warn if you have user defined calls with prefix ‘cuda’

(e.g. cudaErrorCheck macro)
– Both will warn if it encounters unsupported (legitimate) Cuda API call

(e.g. cublasZgemm3m has no HIP equivalent)
– I’ve yet to encounter where I would need one over the other, but I’ve

only done relatively simple cases. So keep your eyes open.

66 Open slide master to edit

What’s Available on Summit

• `module load cuda/11.5.2 hip-cuda`

• Currently supported - HIP 5.1.0

• This module also includes the following libraries:
– hipBLAS (we’ll cover an example and exercise)
– hipFFT
– hipSolver
– hipSparse
– hipRand

• These are (mostly) equivalent to the corresponding CUDA
libraries

88 Open slide master to edit

Let’s Look At Some Examples

• git clone https://github.com/olcf/HIP_for_CUDA_programmers

• Follow along in your terminal

• Add #BSUB –U HIPforCUDA to your batch scripts to use today’s
reservation

https:///
https://github.com/olcf/HIP_for_CUDA_programmers

99 Open slide master to edit

Vector Add

• Needs no introduction – parallel addition of two arrays

1010 Open slide master to edit

Vector add

• run `hipify-perl vector_addition_nohipifywarnings.cu >
vector_addition_nohipifywarnings_hip.cpp`

• cudaXyz --> hipXyz translated in all cases, and work the same

kernel_name<<< blocks_per_grid,
threads_per_block,
shared_memory,
stream_id >>>(

kernel_arg1,
kernel_arg2, ...

)

hipLaunchKernelGGL(
kernel_name,
dim3(blocks_per_grid),
dim3(threads_per_block),
dynamic_shared_memory,
stream_id,
kernel_arg1,
kernel_arg2, ...

)

1111 Open slide master to edit

Vector add

• Run `hipify-perl vector_addition.cu > vector_addition_hip.cpp`

• Look at all the warnings and fix them.

1212 Open slide master to edit

cpu_gpu_dgemm

• Matrix multiplication with double precision FP
This function performs the matrix-matrix multiplication
C=αop(A)op(B)+βC where op(X)is one of op(X) = X, or op(X) = XT, or op(X) = XH
where α and β are scalars, and A , B and C are matrices stored in column-major format with
dimensions op(A) m×k , op(B) k×n and C m×n , respectively

cublasStatus_t cublasDgemm(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc

)

hipblasStatus_t hipblasDgemm(
hipblasHandle_t handle,
hipblasOperation_t transa,
hipblasOperation_t transb,
int m, int n, int k,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc

)

void dgemm(
char* transa,
char* transb,
int m, int n, int k,
double *alpha,
double *A, int lda,
double *B, int ldb,
double *beta,
double *C, int ldc

)

1313 Open slide master to edit

cpu_gpu_zgemm

• Matrix multiplication with double precision FP for complex
numbers

cublasStatus_t cublasZgemm(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *B,
int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C,
int ldc

)

hipblasStatus_t hipblasZgemm(
hipblasHandle_t handle,
hipblasOperation_t transa,
hipblasOperation_t transb,
int m, int n, int k,
const hipblasDoubleComplex *alpha,
const hipblasDoubleComplex *A,
int lda,
const hipblasDoubleComplex *B,
int ldb,
const hipblasDoubleComplex *beta,
hipblasDoubleComplex *C,

int ldc
)

void zgemm(
char* transa,
char* transb,
int m, int n, int k,
complex *alpha,
complex *A, int lda,
complex *B, int ldb,
complex *beta,
complex *C, int ldc

)

1414 Open slide master to edit

Things to Note

• Since HIP uses CUDA backend on Summit, you can profile
compiled code with Nvidia Nsight tools & debuggers.

• Try to use platform agnostic names e.g. gpuErrorCheck instead
of cudaErrorCheck (or whichever naming scheme works best
for your team and code).

1515 Open slide master to edit

Things to Note
• Pass the –Xcompiler -x -Xcompiler c++ flags to hipcc when using hipcc –ccbin
xlc++_r (see examples/redundant_MM/onefile/hipversion/Makefile.hipcc)
– Not necessary when you’re using gcc as your underlying compiler

• Compiling a HIP file with OMPI_CXX=hipcc mpicxx will fail because mpicxx
automatically adds the -pthread flag which hipcc doesn’t support. This is an issue with
the mpi compiler wrapper (see
examples/redundant_MM/onefile/hipversion/Makefile.mpicc).
– Compile with hipcc directly and link in the MPI libraries instead if your HIP file mixes MPI

and HIP code.

• hipcc does not support PGI compiler, hipcc –ccbin pgc++ will error.
– hipcc uses clang flags, which match gcc and xl flags so gcc and xl work for the most part as the underlying

compiler.

• When using mpicc for linking, link both the CUDA and HIP libraries (see
examples/redundant_MM/twofiles/hipversion/Makefile.mpicclink)

1616 Open slide master to edit

Conclusions

• HIP mostly supports CUDA API

• Hipify tools will convert supported CUDA calls to HIP, and warn
if something not supported

• If anything is not supported:
– Write to the help desk, we’ll work with the vendors
– Implement the kernel yourself, use an alternate HIP call, or use the CPU

version
– (On Summit) use an ifdef to use the CUDA call and link the CUDA

libraries (see examples/cpu_gpu_zgemm/hipversion)

• Let us know if you run into any issues as you try things out

